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On the Theory of Strongly Coupled Cavity Chains*

M. A. ALLEN~ AND G. S. KINO~

Summary—A chain of identical cavity resonators coupled to-

gether through slots in their common walls forms a band-pass micro-

wave filter. The pass band characteristics of such a system are de-

termined by a combination of field theory and circuit theory. The

fields in the cavities are expressed in terms of the normal modes of

the uncoupled cavities. The fields in the neighborhood of a slot are

determined by representing the slot as a transmission line. Irrota-

tional components of the field in the cavities account for direct slot-to-

slot coupling. The method successfully predicts both the dispersion

characteristics and field distributions over large frequency ranges for

many practical systems, such as slow-wave circuits for high-power

traveling-wave tubes.

1. INTRODUCTION

T

HE theoretical determination of the dispersion

relations and the field distributions of a system of

coupled cavity resonators is, in general, a conlpli-

cated problem. Analytic relationships for the resonant

frequencies of a pair of coupled cavities have been ob-

tained by Bethel and have been applied to the case of

weak coupling between cavities through small circular

apertures. His analysis was facilitated by the assump-

tion that the aperture was small compared to the wave-

length, so that he was able to assume that the fields in

the region of the hole have a static distribution. In this

paper, strong coupling will be treated for a system in

which one dimension of the coupling aperture is com-

parable in length to a wavelength. Chains of strongly-

coupled cavity resonators are used in practice as slow-

wave circuits for high-power traveling-wave tubes. In

particular, the case of a chain of cavities coupled by long

narrow slots in their common walls will be considered.

A typical system with which we shall deal is shown in

Fig. 1. For interaction with an electron beam, a beam-

passage hole would be cut in the common walls. The

amount of coupling introduced by such a hole is small

compared with the coupling through the slots.

The case of coupling by long narrow slots has been

treated in the past by assuming a quasi-static field dis-

tl-ibution across the narrow dimension of a slot, In order

to find the coupling through a slot cut in the common

wall of a pair of waveguides, Stevenson2 used this as-

sumption and the further one of a sinusoidal voltage

* Manuscript received by the PGMTT, December 1, 1959; re-
vised manuscript received, January 28, 1960. This research was sup-
ported in part by the U, S. Air Force under Contract No. AF 30(602)-
1844, monitored by the Rome Air Dev. Ctr. of the Air Res. and
Dev. Command; and, in part, jointly by the U. S. Army Signal
Corps, the U. S. Air Force, and the U. S. Navy (Office of Naval Res. ).

~ Microwave Labs., W. W. Hansen Labs. of Physics, Stanford
University, Stanford, Calif.

1 H. A. Bethe, “Theory of diffraction by slmall holes, ” F’lzys. Rev.,
vol. 66, pp. 163–182; October, 1944.

2 A. F. Stevenson, “Theory of slots in rectangular waveguides, ”
J. Appl. Phys., vol. 19, pp. 24-38; January, 1948,
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Fig. l—Cylindrical cavity resonators coupled by long slots,

distribution along the slot; because of this latter as-

sumption his analysis applies only near the slot reso-

nance. Akhiezer and Lyubarsky,3 who considered cavi-

ties coupled by long narrow slots, also employed the

electrostatic assumption for a narrow slot, but derived

the field distribution along the length of the slot by em-

ploying the theory of slot antennae, Each of the two

preceding formulations is long, quite involved, and

difficult to use in practice, In this paper a new method

of approach will be given which makes use of transmis-

sion-line theory to determine the excitation of a slot in

a connecting wall which can be of finite thickness. This

theory is relatively simple to apply, and is, moreover,

formulated in such a manner that the physical behavior

of the system is always readily apparent. ‘

II. THE DETERMINATION OF THE DISPERSION EQUATION

FOR A CHMN OF IDENTICAL COUPLED CAVITIES

We shall consider in this paper a chain of identical

loss-free symmetrical cavities coupled to each other

through long slots cut in their common walls. We shall

take the volume of the ith cavity of the system to be

Vi( Vi = Vi+l, etc.) and shall denote by ,Si’ the area en-

closed on the ith cavity wall by the slot or slots cut in

the wall between the ith and i – lth cavities. Similarly,

the area enclosed on the ith cavity wall by slots cut in

the wall between the ith and i+ 1 th cavities will be de-

noted by Sj”. The remaining surface area of the ith

cavity will be denoted by S~.

We shall express the fields in a cavity in terms of an

expansion in the normal modes which could exist in the

cavity in the absence of the slots; the coefficients of this

expansion, or the excitation of such normal modes, will

depend on the tangential component of electric field at

the slots. The electric and magnetic fields of the nth

normal mode of the ith cavity will be taken to be ~;,.

and ~~,,, respectively, the characteristic radian fre-

a A. I. Akhiezer and G. Ya. Lyubarsky, “On the theory of coupled
cavity resonators, ” J. Tech. Phys. ( USSR), vol. 24, pp. 1697-1708;
September, 1954.
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quency being w,,,. with exp(jti~,nt) dependence of all

field quantities assumed.

The fields of these normal modes obey Maxwell’s

equations individually, and satisfy the boundary condi-

tions at the perfectly conducting metal walls of the

cavity, which are, for the ith cavity,

tic X l?~,,, = O on S~ + S,’ + S,”

an d

where I?; is the unit normal vector at the surface of the

ith cavity pointing into the ith cavity.

It has been shown by Teichmann and Wigner’ that

the normal modes do not form a complete set of func-

tions in terms of which any possible fields in the system

of coupled cavities can be expressed. In the presence of

coupling holes and loops, it is necessary to add irrota-

tional components of electric and magnetic field to form

the complete expansion. When only coupling slots are

considered to be present, Teichmann and Wigner have

shown that only an irrotational magnetic field, in addi-

tion to the normal mode fields, is required. In order to

point out the principles of our method of approach, we

shall first set up the complete expansion, but in the first

application of the method we shall neglect the contribu-

tion of this irrotational part of the magnetic field. How-

ever, in a later part of the paper, we shall show that it is

often necessary to consider this component of the field;

it is, in fact, extremely important when the periodic

length of the system is very much less than a slot width,

since it accounts for the direct coupling from slot to slot

of a multicavity chain and changes the effective slot

resonant frequency.

We shall denote the irrotational component of the

magnetic field in the ith cavity by Z,,O. By definition

V X Z7i0 = O. (2)

Hence, ~,,0 can be expressed as the gradient of a scalar

quantity *, by writing

z, o = V+c. (3)

Using an approach similar to that of Slater,5 as shown

in Appendix A, the fields ~, and Z?, that exist in the ith

cavity of the coupled system may be expressed as fol-

lows :

4 T. Teichmann and E. P. !\’igner, “Electromagnetic field ex-
pansions in loss-free cavities through holes, ” ~. AP&. Phys., VO1. 24,
pp. 262–267; March, 1953.

s J. C. Slater, “Microwave Electronics, ” D. Van Nostrand CO.,
Inc., New York, N. Y.; 1950.
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1- LI’v*, n .1

where

1
W,>n = ~

s
eE,, n2dr = —

J
,LL~i,%%~TS (6)

2 ~$ 2 J7%

In the ith cavity, because V. ~i,O = O, we have the con-

dition

W+{ = o (7)

with the boundary condition

—
@~.VIJ< = fii. Hi on S%l + Si’”. (8)

On the surface of a connecting slot, the normal com-

ponent of ~ is not zero, so that ~~,o exists in the ith

cavity, and it is necessary to include it in the normal

mode expansion.

Thus the fields in the z’th cavity have been expressed

entirely in terms of the tangential component of the

electric field and the normal component of magnetic

field at the slots which are cut in its walls.

We determine the field distribution along a slot by

considering it to consist of a pair of finite-width parallel

conductors with perfect shorts placed aCrO~S them at

planes corresponding to the ends of the slot. This is

illustrated in Fig. 2. Because the slot width, or con-

ductor spacing, is assumed to be much smaller than a

wavelength, it is reasonable to assume that the electric

field lines in the neighborhood of the slot dwa~s lie in a

plane perpendicular to the longitudinal dimension of the

slot; thus there can only be pure TE waves or TEM

waves existing in the region of the slot. For a start, we

shall assume that the slot fields themselves are pure

TENI; this assumption may be shown tc) be equivalent

to neglecting the presence of the irrotational mode. It

is then possible to express the electrical prc}perties of the

slot in terms of transmission-line theory, the inductance

and capacitance of the transmission line ‘being com-

puted by static considerations from the transverse di-

mensions of the slot. In order to write down suitable

transmission-line equations to represent the excitation

of a slot by the cavity fields, it is convenient to divide

the currents flowing in the neighborhood of the slot into

two parts. The first part is the current, 1“,which flows

around the slot or along the length of the transmission

line; this current is directly associated with the conl-

ponent of magnetic field normal to the plane of the slot.

The second part is the exciting current, j:,, which flows

on the surface of a cavity into the slot in a direction

perpendicular to the longitudinal dimension of the slot;

this current is associated with the compc)nent of mag-

netic field in the cavities which lies along the longi-
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Fig. 2—(a) and (b) Views of slot with coordinate system shown.
(c) Section through slot showing behavior of the electric field.

tudinal dimension of the slot. For a slot which is cut in

the common wall of the i — lth and ith cavities, the cur-

rent j~ flowing into the slot is given in value by the ex-

pression

where the subscript y represents the direction along the

surface of a cavity, perpendicular to the longitudinal

direction of a slot and j. denotes the total current flow-

ing into the slot on both sides of the wall between the

i — lth and ith cavities. The significance of these two

current components is illustrated in the transmission-

line representation in Fig. 3. This representation yields

two differential equations for the voltage and current

distributions along a slot in terms of the fields at a slot;

these may be written as follows:

(lo)

(11)

with the boundary conditions

where C is the capacitance per unit length of the slot, L

is the inductance per unit length of the slot, @ the volt-

iy

lIHHH1

Ldx —1

Cdx - —

A

Fig. 3—Transmission-line representation of the slot
with net current flow across the slot.

May

age across a slot, 1 the length of a slot, and x denotes

distance along the slot from its center. Eqs. (10) and

(11) yield the differential equation for the voltage dis-

tribution across a slot, in terms of the driving currents

due to the cavity modes,

$ + k’+ = – jkZOja (13)

where k = u/G and ZO = ~L/C, the characteristic im-

pedance of the slot. IYriting this equation as

(14)

the solution (see, for example, Webster’$) may be ex-

pressed as follows:

sin k(l/2 – x) z
+ . ———_

k sin kl s
sin k(l/2 + ~)j(l/2 + ~)d<

–1/2

sin lz(x + 1/2)

f

1/2

+
k sin kl .

sin k(t/2 – ~)j(l/2 – $)d$. (15)

By writing

J
d@=Q@y, (16)

o

we thus have an expression for the tangential com-

ponent of the electric field at the slot in terms of the

cavity fields in the neighborhood of a slot of width d.

The characteristic impedance ZO can be determined an-

alytically by a conformal transformation or experi-

mentally in an electrolytic tank. Thus finite connecting

wall thickness may be taken into account. For the

limiting case of zero wall thickness the inverse cosine

transformation may be used.7

We have in (4) and (5) an expression for the fields in

the ;th cavity in terms of the tangential component of

the electric field at (i. e., the voltage across) the slots.

The current which flows into the region of a slot is ex-

pressible in terms of these fields and hence in terms of

the voltages across the slots. This current is the current

c A, G. IVebster, ‘{Partial Differential Equations of Mathematical;
Physics, ” Dover Publication?, New York, N. Y.; 1955.

7 S. Ramo and J. R. Whmnery, “Fields and Waves in Modern
Radio, ” John Wiley and Sons, Inc., New York, N. Y., 2nd cd., pp.
135-138; 1953.
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which excites the slot fields, and in terms of which the

voltage across a slot was expressed in (13) and (15). As

a result, we have an expression for the current flowing

into the region of a slot in terms of the voltage across a

slot, and an expression for the voltage across a slot in

terms of the current flowing into the slot region. On

combining these expressions, a single integral equation

whose eigenvalues give the dispersion equation of the

coupled system may be obtained. For simplicity, we

shall only consider a system made up of identical cav-

ities coupled by a single slot in each cavity wall; the

extrapolation of the method to a multislot coupling sys-

tem may be readily accomplished.

Following the procedure outlined above, we first

write down the current jg in terms of the normal mode

fields in the ith and i – lth cavities. Thus from (5) and

(9) it follows that

10+ x (12i–l,nEi–l,n) si_,” 17
n -k

where, at this juncture, we have neglected the contribu-

tion of the irrotational field. A further transformation of

(17), by writing it in the form

~~ = Z (~t,,fl.j~,~,u’) + z (~li–l,rlji–1,.,v”) (18)
r, n

is convenient, where ji,~’ and ~i–1,~ ‘‘ are the surface cur-

rents, in the region of the slot of the ?Lth normal modes

in the ith and ; — Ith cavities respectively. In terms of

the normal mode fields

j,,n’ = (fi, x H,,n)st,,,)

ji_l,n” = (fit x R,-l,n)s_l,fi”. (19)

The form of these equations may now be simplified

by taking the nth normal mode fields in each cavity to

be identical, so that we can use Floquet’s theorem to

write

k,_l,m = lli,nei~L (20)

where L is the periodic length of the system, and ~L the

phase delay between cavities.

Moreover, as the cavities are symmetrical and identi-

cal,

jt,n
ll_.– j&.l,n” = f jt,n’ (21)

where the choice of sign depends on the form of the nth

mode of the cavity. For example, the negative sign is

appropriate for the TM 010 mode of a cylindrical cavity,

the positive sign for the TM OH mode of the same cavity.

Thus, we can simplify (18) by the use of (20) and (21)

and write

~V = z h,,,,(l + e’~~)j,,~,g’. (22)
n

In order to determine the final dispersion relation, we

must first find h~,n in terms of jv. To dcl this, we may

make use of (5) and (19) to write

We may use Floquet’s theorem and (21) tc, write (23) in

the form:

J E,.ji,.’(l f (?-~~~)ds

–j&! s%”
lZ —L,,&=

d — coi,nz 2w’,,n
–-–— . (24’)

In order to express (24) in terms of the voltage across

the slot, it is convenient to make the assumption that

j;,n’ is constant over the width of the slot, although this

assumption is not strictly necessary. With this assump-

tion, however, we may carry out the integriltion over the

width of the slot and write

We now find j. in terms of @ by substituting (25) in (22)

to yield the following expression:

(
1/2

–ju(l + cos @L)j,,~,Y’ +sji,nw’dx

j. == ~ —__ –J~~’~-––– o (26)
n (co’ - Cu,n’)?v,,fi,

It will be recalled that we have already found Oi in terms

of jV in (15); thus we are in a position to eliminate cPi

from (15) and (26) and to write the follc~wing integral

equation for jg:

{[ ssin k(l/2 – cc) Z
“ .ii,n,ll

k sin kl
sin k(l/2 + z)f(l/2 + ~)d~

–1/2

sin k(x + 1/2)

s

1/2

+ sin k(l/2 – &)j(l/2 -- ~)cl.$1)(27)
k sin kl z

where

Eq. (27) is a Fredholm integral equation of the second

kind which may in principle be solved tcl give the possi-

ble modes of the coupled system. Such a procedure is,

in practice, too difficult, so that it is necessary to make

certain approximations of a type which willl be described

in the next section. Alternatively, it is sc~metirnes con-

venient and more accurate to set up the solution for this

coupled system in a variational form. The procedure for

obtaining this variational form of the solution is given

in Appendix B.
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II 1. APPLICATION TO ~ PARTICULAR CAVITY CHAIN

The particular resonators which we shall study for the

purpose of illustrating our methods will be cylindrical

cavities coupled to one another by long, circumferential,

narrow, identical slots cut in the common walls of adja-

cent cavities, as shown in Fig. 1.

The dominant cavity mode in the system, before the

slots are cut in the disks, will be taken to be the TMOIO

mode. Its characteristic radian frequency will be de-

noted by wI.

We have developed an expression, (27), for the char-

acteristic frequencies of a coupled system. We shall

make use of an approximation to this expression which

employs only the dominant (TM OIO) mode in the series

expansion. This gives rise to a simplified coupling equa-

tion. At a later stage, the effect of the irrotational mag-

netic mode introduced earlier will be considered.

.4. Dominant Mode E.~pansion

The circumferential coupling slot will be taken to be

cut close to the cylindrical walls. The slot length and

thickness are denoted by 1 and lL, respectively, and the

cavity radius and length by a and b, respectively. Thus,

the periodic length of the system is L =a+lz. The dom-

inant TMOIO mode of the cavities has the following fields:

E, = EoJ,(k,~)

(28)

where ~.(x) is a Bessel function of the first kind and vth

order; and

Pol being the first zero of the zero-order Bessel function.

We shall refer to this dominant mode by the subscript 1.

In the normal mode expansion we shall only use this

dominant mode term to determine the coupling. The

fields in the cavities are therefore expressed as follows:

where ~~’ and ~,’ are the remaining fields orthogonal to

the dominant mode. The current jg which drives the

slot is assumed to arise only from the dominant mode

fields. These fields have no O variation, which, for cir-

cumferential slots, means that they have no x varia-

tion. With the current being independent of the x co-

ordinate, (15) gives #1, in the form

(
jZojv ~_cos kx

&=. –
k )COSkl/2 “

(30)

By retaining only the dominant mode in (27), and not-

ing that jv is now independent of the x coordinate, we

obtain the following dispersion relation:

Q(I – fll~) .6L
=arsinz —=a

()

(31)
pQ17r pQ17r 2

tan — —
2–2

(32)

and

Since the cavities are identical we now omit the sub-

script referring to the particular cavity.

Eq. (31) yields on solution an infinite number of val-

ues of w for each value of a, the dimensionless coupling

coefficient. For am sinz ~L/2 = O (for this system, when

~L = O) these values of w are WI, W.l, u,,, CO,S,. . . . cor-

responding to the poles of the denominator and zero of

the numerator of (31). Solving the equation as @L in-

creases in value from zero to r, an infinite number of

pass bands results, one associated with the cavity

dominant mode characteristic frequency 01, and the

others associated with the frequency U,p which makes

the slot @ half-wavelengths long. We shall concern our-

selves only with the two lowest frequency pass bands:

the one associated with al, and the other associated with

w.1. Plotted on an C@ diagram, the higher frequency

curve has a positive slope (da/d~ > O) and the low fre-

quency curve has a negative slope (du/dfl < O).

Numerical solutions of (31) are given, with the

quantity ill plotted as a function of p, frolm p = 0.5 to

p =2.5 for several values of a from zero to unity in Fig.

4. With a known, the @ diagram may be plotted for

the coupled-cavity system by taking values from Fig. 4,

using the appropriate value of uJu,l.

In order to determine the dispersion relation for a

particular system, we must evaluate the coupling co-

efficient. In the dominant mode we have

(33)

assuming the slot is cut near the maximum radius where

the magnetic field is a maximum.

Since the dominant mode has no O variation, the en-

ergy stored in this mode, WI, is expressed by a single

integral,

(34)

On substituting (33) and (34) into (32)

For the TMO1O mode Al= 2.61a; hence

we obtain

(35)
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87r3c3
C013 = —

17.8a3’
(36)

and since e = l/qc where T is the characteristic impedance

of free space, we obtain finally a simple formula for the

coupling coefficient

()()0%=0.183 2.
bq

(37)

This coupling coefficient, as we might expect, depends

upon the static properties of the slot, ZO, and the ratio

of the cavity radius to the cavity length, a/b.

The dispersion characteristics for a typical structure

are shown in Fig. 5. Agreement between theory and ex-

periment is seen to be good in the cavity pass band. In

the slot pass band some disagreement is observed, and

in structures where the slot width is comparable to the

cavity length (d = b in Fig. 1) this disagreement be-

comes large. This is a result of the exclusion of the irro-

tational component of the magnetic field from the field

expansion.
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Fig. 4—Solutions to the dispersion relation (31).
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Fig. 5—Typical Brillouin diagram between @,= O and pL = r for
the two lowest pass bands for a coupled-cavity system of the
type shown in Fig. 1.

B. Inclusion of the Irrotational Mode

We shall now consider the way in which the irrota-

tional magnetic mode arises in the couplecl system under

study. It was shown that the fields in the s[ots gave rise

to voltages and currents which obey the normal trans-

mission-line equations with an additional driving cur-

rent term. The current which flows along the slot is di-

rectly related to the normal component of magnetic

field at the slot. If this slot were cut in an infinite plane,

it could be assumed that the slot fields were pure TEM.

However, because the slot is actually cut in the wall of

a closed resonator, the magnetic field lines must be con-

tinuous through the slot and must be clcwed, as shown

in Fig. 6. Therefore, a longitudinal component of the

magnetic field must exist which is associated with the

normal magnetic field at the slot. Mathematically, this

longitudinal field component can only be expressed by

the irrotational field.

This longitudinal component of magnetic field, which

is represented by the irrotational mode, has two ef-

fects: 1) It gives the effect of shunt inductance across

the slot and, hence, changes the resonant frequency of

the slot. 2) It introduces a component of field which can

directly provide large amounts of slot-slot coupling or

mutual inductance between the slots. In order to illus-

trate what occurs, we consider the system of slot-

coupled resonators shown in Fig. 7. There will be an

irrotational component of magnetic fielcl originating

from the currents which flow along slot A. Associated

with this irrotational magnetic field there will be cur-

rents which flow in the walls of the two cavities per-

pendicular to the slot A. The wall current which flows

Fig. 6—Sketch of magnetic field lines associated with the
normal component of the magnetic field at the slot.

/“ f’ /c
//////// /////A////////////////////L///////////

Fig. 7—Current associated with the Iongitudina.1 component of
the irrotational part of the magnetic field at the slot.
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across slot A we call the “self” current; it may be repre-

sented by the current flowing in a shunt inductance

across slot A, and it causes an increase in the resonant

frequency of the slot. Similar currents arise from the

slots B and C adjacent to slot A in Fig. 7. A portion of

these currents flow into slot A as “mutual” currents, giv-

ing slot-slot coupling which may be represented as mu-

tual inductance between the adjacent slots A-B and

A-C. If there is zero phase shift between adjacent slots,

the mutual current from the two slots adjacent to a

given slot and the self-current of the slot will tend to

cancel. For a 7r/2 phase shift there will be no net effect

from the mutual currents arising from adjacent slots,

and at r phase shift the self and mutual currents will

add, The over-all effect is that the bandwidth of the

slot band is reduced below the value predicted by a the-

ory which does not include the irrotational component

of the magnetic field. The effect of this extra component

of field is less important in the cavity pass band than in

the slot pass band.

The situation which has been described is that which

is the case for identically placed slots between the

cavities. If the slots at one plane are rotated with re-

spect to the slots at adjacent planes the effect of the

mutual currents is reduced.

Fig. 8 gives experimental results in a system with the

slots aligned and in a system with the slot rotated 90°

to adjacent slots. It is noted that with the mutual effect

eliminated, the self-effect raises the slot band in fre-

quency but does not reduce its total bandwidth.

The behavior of this irrotational mode depends on the

determination of the function which is the solution to

the Neumann problem in a cylindrical cavity resonator

with the given boundary conditions. With the problem

solved, the gradient of this function is taken along the

slot itself and along adjacent slots to give the self- and

mutual currents, respectively. The solving of the Neu-

mann problem involves dealing with slowly converging

series of trigonometric and Bessel functions. The con-

vergence of these series depends critically on the fact

that the width of the slot is finite. It has not been possi-

ble to sum these series in closed form; consequently

only a semiquantitative picture will be given of the ef-

fect of the irrotational mode, or the “slot-slot” coupling

which it represents. The slot is of width d, and is placed

at z = L, as shown in Fig. 9. We have for a given cavity

d~
—=Hn on S’+S”
dn

(3$
=0 on S.

G
(38)

The most general solution for IJ which obeys Laplace’s

equation and the boundary conditions of the cylindrical

cavitv is

mm

with

~n’(&a) = O.

The current along the slot, 1, is related

magnetic field -H. at the slot as follows:

LI = pH.d

to the normal

(40)

where L is the inductance per unit length of the slot, as

defined previously. The field is assumed to be constant

across the width of the slot. From (10), (1 1), and (30)

we have

1 = 10 sin (ah9), (41)

where 10 is the maximum value of the total current flow-

ing along the slot. We note that L/p= ZO/~ where ZO

and ~ are the characteristic impedances of the slot and

free space, respectively. Thus, from (40), at the slot we

have

at Z. 10
— — — sin (akO).

&.=L-7 d
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Fig. 8—Brillouin diagrams for coupled-cavity system. A,
slots in line. B. Adjacent slots rotated 90°.
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Fig. 9—Coordinate system for calculation of irrotational
component of the magnetic field.
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Eqs. (38), (39), and (42) maybe combined8 to give an

approximate expression for the irrotational field in the

cavities and the self- and mutual currents associated

with this field give an added current flowing in the slot

region at the cavity

io= –P:++os(m (43)

where

We have made the approximation of using only the

first O term in the double summation of (39). The

strongly converging terms

(sin35;:2)Y
arise from integrations over the finite width of the slots.

The net current driving the slot is jv-l-juo. Modifying

(11) accordingly, (31) now becomes

Ql(l – fh’)

tan (P’fkw/2) – p’fllr/2

= CZV’1 + P – Q cos /3L sinz (flL/2) (45)

where

P

“=dl+P-Qcos/3L’

Thus, we have a coupling equation which is of the same

form as the coupling equation obtained without the in-

clusion of the irrotational mode, but with different slot

resonant frequencies and coupling coefficients,

(-o,,’ = co,,I/1 + p – Q COS/3L

(46)

The quantity P, the self-term, will in general be larger

than the quantity Q, the mutual term, from adjacent

slots. The slot resonant frequency will be higher than in

the case without the inclusion of the irrotational mode

at ~L = O. As ~L increases, the slot resonant frequency

will increase in value. Based on this higher slot resonant

frequency, the coupling between cavities will, for cer-

tain (3L, give a characteristic frequency below this

resonant frequency, as is given by the equation whose

solutions are given in Fig. 4. The net result will be a de-

crease in the total bandwidth of the pass band associ-

ated with the slot resonant frequency. The sum of the

s M. A. Allen, “Coupling of ~Iultiple Cavity Systems, ” Micro-
wave Lab., W. W. Hansen Labs. of Physics, Stanford University,
Stanford, Calif., M.L. Rept. No. 584; 1959.

first ten terms of the expansion, in (44), gives a good ap-

proximation of the expansions. In (45) the values of P

and Q thus obtained account for the departure from

theory in the lower pass band of Fig. .5.

IV. DETERMINATION OF FIELD DISTRIBUTIONS

In assessing the usefulness of microwave filters for

interaction with an electron beam, the quantity

E2(0) / W is a figure of merit where B(O) is the square of

the longitudinal component of the electric field on the

axis and W is the energy stored per perioclic length. This

quantity will be considered.

It is possible to make accurate estimates of the CL@

curves for large coupling between cavities by using a

theory based on only the dominant mode in the normal

mode expansions of the fields. Although the C@ curves

can be accurate at frequencies far from the dominant

mode resonance, the dominant mode alone is not suffi-

cient to express the values of the fields in the cavities.

This is illustrated by the fact that, in Appendix B, we

found an expression for u in a variat.ions 1 form; thus,

by using only a rough estimate of the fields in the slot

we obtain a value for the frequency which is less in error

than the estimate of the fields themselves.

A theorem exists for lossless periodic transmission

system which states that the time-average electric

stored energy per period is equal to the time-average

magnetic stored energy per period in the pass band. A

proof of this theorem has been given by several authors.g

Using this theorem we are able to express the stored en-

ergy per period in terms of only the electric energy.

The cylindrical cavity resonators with which we are

concerned have lengths much smaller than their diam-

eters. The characteristic frequencies of the normal

modes having variations of the field in the direction of

the cavity length (z-varying modes) will thus be very

much above the characteristic frequencies of the cor-

responding non-z-varying modes, and willl have much

smaller amplitudes in the expansion. Therefore, the

electric energy stored in the coupled system under con-

sideration, except in and around the regicm of the slot,

comes largely from the dominant mode and other non-

13-, non-z-varying modes. The dominant mode has a

longitudinal component of the electric field which has a

maximum value on the axis and falls to zero at the cir-

cumference of the cavity. Higher-order modes have

further zeros between the maximum va’lue on the axis

and zero at the circumference. In the coupled sys-

tem, for values of frequency above the clominant mode

frequency, since one or more additional zeros in the

longitudinal component of the electric field must occur,

the dominant mode alone cannot give a good representa-

tion of the field. This is illustrated in Fig. 10. Thus the

stored energy in the cavities must have appreciable con-

tributions from several modes.

g D. A. Watkins, “Topics in Electromagnetic Theory, ” John
Wiley and Sons, Inc., New York, N. Y.; 1958.
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t

J- 1

(a)

modes’ contributions separately. The voltage @ may

therefore be obtained from (30).

If now the field on the axis is considered, then, of the

normal modes which have a longitudinal component of

electric field on the axis, the non-z-varying modes will,

as in the considerations of energy, contribute more to—.

L/
the normal mode expansion for the electric field on the

‘O IEOI+ ‘02E02 axis than the z-varying modes. Thus, for cavities of

(b)

Fig. 10—k’or structure in (a), the plot of the amplitudes as a function
of radial distance for the first two terms of the normal mode
expansions is given in (b).

We now consider the slot region. If the total field ~

everywhere is divided into two parts

‘=(TeOnEOn)+E’(47)

where the subscript OtZ refers to the TMo.o modes, then

a large proportion of the electric energy stored in the

slot region would arise from the part of the field repre-

sented by ~’. Because of the orthogonality of the nor-

mal modes, the stored energy W per periodic length is

given by

w = 1/2
s

@ . ~*dr
vi

The summation in (48) may be summed in closed form.8

The volume integral on the right-hand side of (48) has

most of its contribution from the part of the volume

near the slot. The behavior of the field in the slot region

was derived from considerations of the excitations of a

TEM wave guided by parallel-plane conductors leading

to a static description of the fields there. The energy in

the fields at the slot is as would be derived for a static

distribution of the fields. Thus, the time-average electric

energy stored by a slot W,E is given by

W.z = 1/2
s

e~ . ~’*dr
v%

[

1[2

= 1/2 Gj’dx. (49)
. –1/2

We assume that (49) includes all the energy stored out-

side the TMono modes in the coupled system, and so

avoid having to consider the z-varying and O-varying

large diameter-to-length ratio, we express the electric

field on the axis as an expansion based only on the

TMO~O normal modes,

z(o) = ~ eonzon(o). (50)

We note that the azimuthal-varying modes have no

longitudinal component of the electric field on the axis,

and they need not be considered as they are in comput-

ing W, the total stored energy per period. Using values

of frequency based on the dominant mode expansion,

(50) may be summed in a closed form.’

For the type of coupling we are considering, the irrota-

tional mode makes no direct contribution to the electric

energy stored per period; it contributes only to the

stored magnetic energy. However, this irrotational

mode does have an effect on the values of the coeffi-

cients of the normal mode expansions. Values of fre-

quency based on this irrotational mode should be in-

cluded in the determination of the quantity E2 (0)/W,
especially in the slot band.

Some typical theoretical and experimental results are

shown in Fig. 11. If only the dominant mode had been

used in the normal mode expressions the large values of

E~(0) / W at largevaluesof ~L in the upper pass band

would not have been predicted.

APPENDIX A

EVALUATION OF THE COEFFICIENTS OF THE NORMAL

MODE EXPANSIONS OF THE FIELDS IN A CAVITY

The normal modes of the ith cavity are given by

wnf~l are the associated characteristic frequencies, with

time dependence

electric boundary

v

T

v

7

with

n x E,,,

~—imn(i)t

assumed. Maxwell’s equations with

conditions are obeyed:

x & = – j%,.lmi,n )

(51)

X ZTTr9,= – jw%,nd,. J

.=0 on Sii-Si’+Si”. (52)
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1 I The normal mode expansions are>
>c

)<
\K i= >’ ‘< F

E~ = ~ C;,.E<,. (58)

~; = ~ h,,%~{,n + ~+, (59)
~;—

. EXPERIMENTAL POINTS where
X THEORETICAL POINTS

I

I

* s

—

cmEi . Em,n*dr

d ;
3D, >, v*

): ~i,n = — (60)

Y
s

pzi,. . E, i.dr
.’

. . . vi

o 77/6 77/ 3 T/2 2T/3 5r/6 T

19L —

Fig. 1 l—Normalized E2(0)/ W plotted as a function of /3L for the
two lower pass bands of a coupled-cavity system of the type
shown in Fig. 1.

The required fields ~(?) and ~i(?) satisfy Maxwell’s

equations with frequency w in the coupled system:

b x Ei == –j@Z\

(53)

with

#j X z~(r) = O on Sa — S~’ — Si~~. (54)

We consider the following:

By using (51) and (53) and employing Gauss’s theorem

we have

and, similarly, by considering

and (52) we can show that

J —*—@c(Ei,~. E)dr — coi,w
f

/J(77T,n.Zi)dT = O. (57)
v;

and

By using (56) and (57) we obtain

since the surface integrals only have values at the slot

surfaces.

APPENDIX B

VARIATIONAL FORM OF THE SOLIJTION

We shall start with the basic equaticms, (13) and

(26), for the excitation of the slots. Th~ese equations

combine to give

0)(1* Cosfm)

s

1/2 *

kZ, ~
CIY — COi,nz

.ii,n,u’ ji,?t,!l’wx
% –1/2

——

2Wi,.
(64)

for the case of a chain of identical cavities. Rewriting,

we obtain

Multiplying (65) by @j*, and integrating once along the

slot, we obtain
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1/2 &&

J( )—+;du+<*d~=2
-1/2 8X2 c

6J(1 * Cos BL)

s

1/2

s

1/2 *

“z ji,r2,@%*dx jt,n,v!bdx. (66)

n 2(02 – (l&,nz)Wi,n –2/2 –1]2

Integrating by parts the second term on the left-hand

side of (66) we have

ml

s

1/2

s

1/2 &ji &pi* Zo
— f$@<*dx – —— . .

c1 –1/2 _l[2 dx dX c

“ ; ~::::, :;2$) J2’2~$!nsu4i*~xJ’’2 7t*!n>.@i~* (67)
%,n –1/2 –1/2

since

@(ii/2) = o

Let us assume that do,i and uo solve (67). A trial func-

tion for the voltage is expressed as follows:

@t(*) = +O,i(x) + %(x). (68)

Since the values of the voltage at the ends of the slot

are known,

e;(-l J/2) = o. (69)

Suppose, then, (67) yields a value of frequency u for the

trial function where

u=uo+A. (70)

Then, it can be shown that A is of the second order in e~.

Thus (67) is a variational form of the solution.
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Microphone in Waveguide*

I. GOLDSTEIN~ AND S. SOORSOORIAN~

Summary-This paper describes the mechanism of phase modu-

lation by waveguide in the presence of a high intensity acoustic field.

X-band rectangular was studied to determine the following:
a) Resonant frequency in a transverse vibrational mode.

b) Means of minimizing phase modulation.

A CW radar can be represented as a microwave

bridge in which the transmitted signal is com-

pared in frequency with the received signal so

that Doppler information may be obtained. Any dis-

turbance of the bridge at the Doppler frequency will

cause degradation in system sensitivity. It is our pur-

pose to show that waveguide under a high acoustical

field can definitely contribute to microphonics via the

mechanism of phase modulation. This can be accom-

plished in many ways to a waveguide but we are prima-

rily interested in transverse motion, The different trans-

verse modes for the top and side waveguide walls are

shown in Fig. 1.

Phase shift is accomplished by the motion of the side

walls. The incremental phase shift is expressed as the

following relationship for a rectangular waveguide op-

* Manuscript received by the PGMTT, November 19, 1959; re-
vised manuscript received, January 21, 1960.

~ Raytheon Company, Bedford, Mass,

PINNED-PINNED RESTRAINTS CLAMPED-CLAMPED RESTRAINTS

Fig. l—First-mode vibration shapes.

crating in the TEIO mode:

&j= incremental change of phase,

da= incremental change of side wall,

a = wide dimension of the waveguide,

1= length of the waveguide,

& = guide wavelength.

Fig. 1 indicates an ideal situation of no coupling be-

tween waveguide walls. However, in actual practice

there is coupling between the motion of the wide walls


