362 fRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

May

On the Theory of Strongly Coupled Cavity Chains*

M. A. ALLENT anp G. S. KINOT

Summary—A chain of identical cavity resonators coupled to-
gether through slots in their common walls forms a band-pass micro-
wave filter. The pass band characteristics of such a system are de-
termined by a combination of field theory and circuit theory. The
fields in the cavities are expressed in terms of the normal modes of
the uncoupled cavities. The fields in the neighborhood of a slot are
determined by representing the slot as a transmission line. Irrota-
tional components of the field in the cavities account for direct slot-to-
slot coupling. The method successfully predicts both the dispersion
characteristics and field distributions over large frequency ranges for
many practical systems, such as slow-wave circuits for high-power
traveling-wave tubes.

I. INTRODUCTION

TYHE theoretical determination of the dispersion
relations and the field distributions of a system of
coupled cavity resonators is, in general, a compli-

cated problem. Analytic relationships for the resonant
frequencies of a pair of coupled cavities have been ob-
tained by Bethe! and have been applied to the case of
weak coupling between cavities through small circular
apertures. His analysis was facilitated by the assump-
tion that the aperture was small compared to the wave-
length, so that he was able to assume that the fields in
the region of the hole have a static distribution. In this
paper, strong coupling will be treated for a system in
which one dimension of the coupling aperture is com-
parable in length to a wavelength. Chains of strongly-
coupled cavity resonators are used in practice as slow-
wave circuits for high-power traveling-wave tubes. In
particular, the case of a chain of cavities coupled by long
narrow slots in their common walls will be considered.
A typical system with which we shall deal is shown in
Fig. 1. For interaction with an electron beam, a beam-
passage hole would be cut in the common walls. The
amount of coupling introduced by such a hole is small
compared with the coupling through the slots.

The case of coupling by long narrow slots has been
treated in the past by assuming a quasi-static field dis-
tribution across the narrow dimension of a slot. In order
to find the coupling through a slot cut in the common
wall of a pair of waveguides, Stevenson? used this as-
sumption and the further one of a sinusoidal voltage
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1844, monitored by the Rome Air Dev. Ctr. of the Air Res. and
Dev. Command; and, in part, jointly by the U. S. Army Signal
Corps, the U. S. Air Force, and the U. S, Navy (Office of Naval Res.).
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Fig. 1—Cylindrical cavity resonators coupled by long slots.

distribution along the slot; because of this latter as-
sumption his analysis applies only near the slot reso-
nance. Akhiezer and Lyubarsky,® who considered cavi-
ties coupled by long narrow slots, also employed the
electrostatic assumption for a narrow slot, but derived
the field distribution along the length of the slot by em-
ploying the theory of slot antennae. Each of the two
preceding formulations is long, quite involved, and
difficult to use in practice. In this paper a new method
of approach will be given which makes use of transmis-
sion-line theory to determine the excitation of a slot in
a connecting wall which can be of finite thickness. This
theory is relatively simple to apply, and is, moreover,
formulated in such a manner that the physical behavior
of the system is always readily apparent.

I1. THE DETERMINATION OF THE DI1SPERSION EQUATION
FOR A CHAIN OF IDENTICAL COUPLED CAVITIES

We shall consider in this paper a chain of identical
loss-free symmetrical cavities coupled to each other
through long slots cut in their common walls. We shall
take the volume of the ¢th cavity of the system to be
Vi(Vi= Vi, etc.) and shall denote by .Sy’ the area en-
closed on the ith cavity wall by the slot or slots cut in
the wall between the 4th and 7— 1th cavities. Similarly,
the area enclosed on the 4th cavity wall by slots cut in
the wall between the 7th and 7+1th cavities will be de-
noted by S;’’. The remaining surface area of the ith
cavity will be denoted by S.. )

We shall express the fields in a cavity in terms of an
expansion in the normal modes which could exist in the
cavity in the absence of the slots; the coefficients of this
expansion, or the excitation of such normal modes, will
depend on the tangential component of electric field at
the slots. The electric and magnetic fields of the =nth
normal mode of the ith cavity will be taken to be E; .,
and H.., respectively, the characteristic radian fre-

8 A. 1. Akhiezer and G. Ya. Lyubarsky, “On the theory of coupled
cavity resonators,” J. Tech. Phys. (USSR), vol. 24, pp. 1697-1708;
September, 1954,
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quency being w, ., with exp(jw;.f) dependence of all
field quantities assumed.

The fields of these normal modes obey Maxwell’s
equations individually, and satisfy the boundary condi-
tions at the perfectly conducting metal walls of the
cavity, which are, for the <th cavity,

ﬁ’iXEi,n: 0 on Si‘l‘S/"i"‘S/’

and

i Hin =0 on S;+5/+5/ (1)

where #; is the unit normal vector at the surface of the
7th cavity pointing into the 7th cavity.

It has been shown by Teichmann and Wigner* that
the normal modes do not form a complete set of func-
tions in terms of which any possible fields in the system
of coupled cavities can be expressed. In the presence of
coupling holes and loops, it is necessary to add irrota-
tional components of electric and magnetic field to form
the complete expansion. When only coupling slots are
considered to be present, Teichmann and Wigner have
shown that only an irrotational magnetic field, in addi-
tion to the normal mode fields, is required. In order to
point out the principles of our method of approach, we
shall first set up the complete expansion, but in the first
application of the method we shall neglect the contribu-
tion of this irrotational part of the magnetic field. How-
ever, in a later part of the paper, we shall show that it is
often necessary to consider this component of the field;
it is, in fact, extremely important when the periodic
length of the system is very much less than a slot width,
since it accounts for the direct coupling from slot to slot
of a multicavity chain and changes the effective slot
resonant frequency.

We shall denote the irrotational component of the
magnetic field in the ith cavity by H, . By definition

VX H;o=0. (2)

Hence, H,, can be expressed as the gradient of a scalar
quantity ¥, by writing

o= VY. 3)
Using an approach similar to that of Slater,® as shown

in Appendix A, the fields E, and H, that exist in the 7th
cavity of the coupled system may be expressed as fol-

lows:
jwi,n
_ 2[7

2
n w* — Win

Ez = Z ei,nE1,n
n

f (E; X H;,*) - 7.dS
RN

207, .,

% (4)

in

4+ T. Teichmann and E. P. Wigner, “Electromagnetic field ex-
pansions in loss-free cavities through holes,” J. Appl. Phys., vol. 24,
pp. 262-267; March, 1953.

6 J. C. Slater, “Microwave Electronics,” D. Van Nostrand Co.,
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H,o= Y hinHin + VWi = L
n n w? — wi,n2
[ [ @xE»nas
8,48, -
. H,. |+ VY, 5
L ZIVQ,H - ¢ ( )

where

1 1
W= —f eE, 2dr = ——f wH ;R dr. (6)
2 v, 2 v,

In the ith cavity, because V-H, =0, we have the con-
dition

Vi, =0 (7
with the boundary condition

on S/ -+ S5/ (8)

fig Vi = fig- H;

On the surface of a connecting slot, the normal com-
ponent of H is not zero, so that H;, exists in the ¢th
cavity, and it is necessary to include it in the normal
mode expansion.

Thus the fields in the 7th cavity have been expressed
entirely in terms of the tangential component of the
electric field and the normal component of magnetic
field at the slots which are cut in its walls.

We determine the field distribution along a slot by
considering it to consist of a pair of finite-width parallel
conductors with perfect shorts placed across them at
planes corresponding to the ends of the slot. This is
illustrated in Fig. 2. Because the slot width, or con-
ductor spacing, is assumed to be much smaller than a
wavelength, it is reasonable to assume that the electric
field lines in the neighborhood of the slot always lie in a
plane perpendicular to the longitudinal dimension of the
slot; thus there can eonly be pure TE waves or TEM
waves existing in the region of the slot. For a start, we
shall assume that the slot fields themselves are pure
TEM ; this assumption may be shown to be equivalent
to neglecting the presence of the irrotational mode. It
is then possible to express the electrical properties of the
slot in terms of transmission-line theory, the inductance
and capacitance of the transmission line being com-
puted by static considerations from the transverse di-
mensions of the slot. In order to write down suitable
transmission-line equations to represent the excitation
of a slot by the cavity fields, it is convenient to divide
the currents flowing in the neighborhood of the slot into
two parts. The first part is the current, I, which flows
around the slot or along the length of the transmission
line; this current is directly associated with the com-
ponent of magnetic field normal to the plane of the slot.
The second part is the exciting current, j,, which flows
on the surface of a cavity into the slot in a direction
perpendicular to the longitudinal dimension of the slot;
this current is associated with the component of mag-
netic field in the cavities which lies along the longi-
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Fig. 2—(a) and (b) Views of slot with coordinate system showan.
(c) Section through slot showing behavior of the electric field.

tudinal dimension of the slot. For a slot which is cut in
the common wall of the 7— 1th and 4th cavities, the cur-
rent j, flowing into the slot is given in value by the ex-
pression

Ju=Jim1y” +7e) = e X (Hi + Hiv). on ¢+ .Sy (9)

where the subscript y represents the direction along the
surface of a cavity, perpendicular to the longitudinal
direction of a slot and j, denotes the fotal current flow-
ing into the slot on both sides of the wall between the
1—1th and 4th cavities. The significance of these two
current components is illustrated in the transmission-
line representation in Fig. 3. This representation yields
two differential equations f[or the voltage and current
distributions along a slot in terms of the fields at a slot;
these may be written as follows:

¢ .
— = —jwll (10)
Ix

7 .

— —Jy = —juC¢ (11)

ox

with the boundary conditions
Z
¢ =0 at x=i?; (12)

where C is the capacitance per unit length of the slot, L
is the inductance per unit length of the slot, ¢ the volt-
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Fig. 3—Transmission-line representation of the slot
with net current flow across the slot.

age across a slot, / the length of a slot, and x denotes
distance along the slot from its center. Eqgs. (10) and
(11) yield the differential equation for the voltage dis-
tribution across a slot, in terms of the driving currents
due to the cavity modes,

0%

—+ k' = — jkZyj,

Py (13)

where k=w/c and Zy=~/L/C, the characteristic im-
pedance of the slot. Writing this equation as
3%

— B = — f(x),

P (14)

the solution (see, for example, Webster®) may be ex-
pressed as follows:

sin k(1/2 + §)f(1/2 + d

ksin &l —1/2
sin k(x4 1/2) pu2
— sin k(1/2 — £)f(1/2 — &de. (15)
k sin kI r
By writing
d
o= [ na, (16)
0

we thus have an expression for the tangential com-
ponent of the electric field at the slot in terms of the
cavity fields in the neighborhood of a slot of width d.
The characteristic impedance Z, can be determined an-
alytically by a conformal transformation or experi-
mentally in an electrolytic tank. Thus finite connecting
wall thickness may be taken into account. For the
limiting case of zero wall thickness the inverse cosine
transformation may be used.”

We have in (4) and (5) an expression for the fields in
the ¢th cavity in terms of the tangential component of
the electric field at (i.e., the voltage across) the slots.
The current which flows into the region of a slot is ex-
pressible in terms of these fields and hence in terms of
the voltages across the slots. This current is the current

¢ A. G, Webster, “Partial Differential Equations of Mathematical
Physics,” Dover Publications, New York, N. Y.; 1955,

”S. Ramo and J. R. Whinnery, “Fields and Waves in Modern
Radio,” John Wiley and Sons, Inc., New York, N. Y., 2nd ed., pp.
135-138; 1953.

’
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which excites the slot fields, and in terms of which the
voltage across a slot was expressed in (13) and (15). As
a result, we have an expression for the current flowing
into the region of a slot in terms of the voltage across a
slot, and an expression for the voltage across a slot in
terms of the current flowing into the slot region. On
combining these expressions, a single integral equation
whose eigenvalues give the dispersion equation of the
coupled system may be obtained. For simplicity, we
shall only consider a system made up of identical cav-
ities coupled by a single slot in each cavity wall; the
extrapolation of the method to a multislot coupling sys-
tem may be readily accomplished.

Following the procedure outlined above, we first
write down the current j, in terms of the normal mode
fields in the ith and 4—1th cavities. Thus from (5) and
(9) it follows that

iy = #ig X [ Z (hi,nﬁz,n)s,’

n

—l_ Z (hi—l,nﬁi—l,n)siﬂl”] (17)

v

where, at this juncture, we have neglected the contribu-
tion of the irrotational field. A further transformation of
(17), by writing it in the form

jy = Z (hlm]'z,n,yl) + Z (lzi—l,nji-],n,yu)

I

(18)

is convenient, where j;.” and j;,_1.’" are the surface cur-
rents, in the region of the slot of the #th normal modes
in the 7th and 7—1th cavities respectively. In terms of
the normal mode fields

jly", = (ﬁi >< Hivn)sm,n'

ji—l,n“ = (ﬁz X Fz—l,n)S,_l,,,”- (19)

The form of these equations may now be simplified
by taking the nth normal mode fields in each cavity to
be identical, so that we can use Floquet's theorem to
write

hz—l,n = hi,nejﬁL

(20

where L is the periodic length of the system, and 8L the
phase delay between cavities.

Moreover, as the cavities are symmetrical and identi-
cal,

(21)

where the choice of sign depends on the form of the nth
mode of the cavity. For example, the negative sign is
appropriate for the TM,, mode of a cylindrical cavity,
the positive sign for the TMy mode of the same cavity.
Thus, we can simplify (18) by the use of (20) and (21)
and write

Jy = Z how(1 £ emL)]'z,n,y'- (22)
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In order to determine the final dispersion relation, we
must first find k; . in terms of j,. To do this, we may
make use of (5) and (19) to write

Ei-jindS
S,

f EiJuy"dS +
8,

2Win

_jw

2 2
w® — Wi,n

We may use Floquet’s theorem and (21) to write (23) in
the form:

. f Eojin'(1 £ e #5)dS
jo 8.7 (24)

hz,n = N

w® - wi,,f 2W’z,n

In order to express (24) in terms of the voltage across
the slot, it is convenient to make the assumption that
#ix' is constant over the width of the slot, although this
assumption is not strictly necessary. With this assump-
tion, however, we may carry out the integration over the
width of the slot and write

12
f (szi.n,y/dx
—12

Wi

_._]'w

w? = Wi’

hym =

(1 + ¢%D)

- (25

> (25)

We now find 7, in terms of ¢ by substituting (25) in (22)
to yield the following expression:

1j2

—jo(1 + co8 BLYjmy' G finy A%
N ~1/2
Iy = Z

n (wZ - wi,nz) Wz',n

(26)

It will be recalled that we have already found ¢; in terms
of j, in (15); thus we are in a position to eliminate ¢;
from (15) and (26) and to write the following integral
equation for j,:
—jw(l + cos BL)Yf,na Y2
jy:Z Jo(1 + BL)j vy dx
n <w2 - wi,n2)Wz,n

—1/2
. sin k(l/2 — x) *
SO L)

ksin kl —1/2

sin k(1/2 + 2)f(}/2 + §)dk

sin k(x +1/2) U2

L [ k2 - o2 sms]} 27

where
f(@) = — jkZojy().

Eq. (27) is a Fredholm integral equation of the second
kind which may in principle be solved to give the possi-
ble modes of the coupled system. Such a procedure is,
in practice, too difficult, so that it is necessary to make
certain approximations of a type which will be described
in the next section. Alternatively, it is sometimes con-
venient and more accurate to set up the solution for this
coupled system in a variational form. The procedure for
obtaining this variational form of the solutiou is given
in Appendix B.
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I1I. AppricaTION TO A PArRTICULAR CAviTy CHAIN

The particalar resonators which we shall study for the
purpose of illustrating our methods will be cylindrical
cavities coupled to one another by long, circumferential,
narrow, identical slots cut in the common walls of adja-
cent cavities, as shown in Fig. 1.

The dominant cavity mode in the system, before the
slots are cut in the disks, will be taken to be the TM
mode. Its characteristic radian frequency will be de-
noted by w;.

We have developed an expression, (27), for the char-
acteristic frequencies of a coupled system. We shall
make use of an approximation to this expression which
employs only the dominant (TMg;,) mode in the series
expansion. This gives rise to a simplified coupling equa-
tion. At a later stage, the effect of the irrotational mag-
netic mode introduced earlier will be considered.

A. Dominant Mode Expansion

The circumferential coupling slot will be taken to be
cut close to the cylindrical walls. The slot length and
thickness are denoted by / and %, respectively, and the
cavity radius and length by a and b, respectively. Thus,
the periodic length of the system is L =a-+%. The dom-
inant TM g1, mode of the cavities has the following fields:

Ez = Eo]o(kﬂ’)

_ B

Hy = Ji(kar) (28)

n

where J,(x) is a Bessel function of the first kind and vth
order; and

por 2.405

a a

k1

H

po1 being the first zero of the zero-order Bessel function.
We shall refer to this dominant mode by the subscript 1.
[n the normal mode expansion we shall only use this
dominant mode term to determine the coupling. The
fields in the cavities are therefore expressed as follows:

E; = e; Ein+ E/

H, = ki,lﬁz,l + ﬁzl; (29)

where E; and H,’ are the remaining fields orthogonal to
the dominant mode. The current j, which drives the
slot is assumed to arise only from the dominant mode
fields. These fields have no # variation, which, for cir-
cumferential slots, means that they have no x varia-
tion. With the current being independent of the x co-
ordinate, (15) gives ¢, in the form

jZojy(l cos kx >
k cos kl/2)"
By retaining only the dominant mode in (27), and not-

ing that j, is now independent of the x coordinate, we
obtain the following dispersion relation:

¢, = (30)
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Qi1 — Q)
- - = arysin?— =« (31)
<p§ll7r> [93% 4
tan -
2 2
where
49,27 4c?
o, = AL : (32)
W1w12
and
w w1 wsll o
U=—; = =
w1 Ws1 2¢ 2

Since the cavities are identical we now omit the sub-
script referring to the particular cavity.

Eq. (31) vields on solution an infinite number of val-
ues of w for each value of «, the dimensionless coupling
coefficient. For a, sin? 8L/2=0 (for this system, when
BL=0) these values of w are wy, W, W, Ws3, *+ - +, COI-
responding to the poles of the denominator and zero of
the numerator of (31). Solving the equation as 8L in-
creases in value from zero to 7, an infinite number of
pass bands results, one associated with the cavity
dominant mode characteristic frequency w;, and the
others associated with the frequency w,, which makes
the slot p half-wavelengths long. We shall concern our-
selves only with the two lowest frequency pass bands:
the one associated with w;, and the other associated with
ws. Plotted on an w-B diagram, the higher frequency
curve has a positive slope (dw/dB>0) and the low fre-
quency curve has a negative slope (dw/df <0).

Numerical solutions of (31) are given, with the
quantity €, plotted as a function of p, from p=0.5 to
p=2.5 for several values of a from zero to unity in Fig.
4. With « known, the w-8 diagram may be plotted for
the coupled-cavity system by taking values from Fig. 4,
using the appropriate value of wi/w..

In order to determine the dispersion relation for a
particular system, we must evaluate the coupling co-
efficient. In the dominant mode we have

E*(0)

2

P -
/lly =

Ji¥(k1a), (33)

1

assuming the slot is cut near the maximum radius where
the magnetic field is a maximum.

Since the dominant mode has no 8 variation, the en-
ergy stored in this mode, Wiy, is expressed by a single
integral,

@ ¢| B, |?2mrdr
Wi = bf — (34)
0 2
On substituting (33) and (34) into (32) we obtain
82062
oy = . (35)
n’reba’w,®

For the TM g mode Ay =2.61a; hence
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8xic?

- 17.8a3}

3

(36)

w1

and since € =1/9¢ where 7 is the characteristic impedance
of {ree space, we obtain finally a simple formula for the
coupling coefhcient

(%)

This coupling coefficient, as we might expect, depends
upon the static properties of the slot, Zo, and the ratio
of the cavity radius to the cavity length, a/b.

The dispersion characteristics for a typical structure
are shown in Fig. 5. Agreement between theory and ex-
periment is seen to be good in the cavity pass band. In
the slot pass band some disagreement is observed, and
in structures where the slot width is comparable to the
cavity length (d~b in Fig. 1) this disagreement be-
comes large. This is a result of the exclusion of the irro-
tational component of the magnetic field from the field
expansion.

(87)

2.4

20 a=O,OX\£«O
BN o . 205

~a=0.0

ra=1.0 S
' | 2=05] R a
q =u a=0.1
1w
| ——
“az0.0] -
a=1.0- S
0.4
e
0.0
0.5 1.0 1.5 2.0 2.5

P:w(/ws(

Fig. 4—Solutions to the dispersion relation (31).
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Fig. 5—Typical Brillouin diagram between BL =0 and L= for
the two lowest pass bands for a coupled-cavity system of the
type shown in Fig. 1,
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B. Inclusion of the Irrotational Mode

We shall now consider the way in which the irrota-
tional magnetic mode arises in the coupled system under
study. It was shown that the fields in the slots gave rise
to voltages and currents which obey the normal trans-
mission-line equations with an additional driving cur-
rent term. The current which flows along the slot is di-
rectly related to the normal component of magnetic
field at the slot. If this slot were cut in an infinite plane,
it could be assumed that the slot fields were pure TEM.
However, because the slot is actually cut in the wall of
a closed resonator, the magnetic field lines must be con-
tinuous through the slot and must be closed, as shown
in Fig. 6. Therefore, a longitudinal component of the
magnetic field must exist which is associated with the
normal magnetic field at the slot. Mathematically, this
longitudinal field component can only be expressed by
the irrotational field.

This longitudinal component of magnetic field, which
is represented by the irrotational mode, has two ef-
fects: 1) It gives the effect of shunt inductance across
the slot and, hence, changes the resonant frequency of
the slot. 2) It introduces a component of field which can
directly provide large amounts of slot-slot coupling or
mutual inductance between the slots. In order to illus-
trate what occurs, we consider the system of slot-
coupled resonators shown in Fig. 7. There will be an
irrotational component of magnetic field originating
from the currents which flow along slot A. Associated
with this irrotational magnetic field there will be cur-
rents which flow in the walls of the two cavities per-
pendicular to the slot A. The wall current which flows

Fig. 6—Sketch of magnetic field lines associated with the
normal component of the magnetic field at the slot.

/ C
7 i

(
]

i
/ } 7/ d

Fig, 7—Current associated with the longitudinal component of
the irrotational part of the magnetic field at the slot.
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across slot A we call the “self” current; it may be repre-
sented by the current flowing in a shunt inductance
across slot A, and it causes an increase in the resonant
frequency of the slot. Similar currents arise from the
slots B and C adjacent to slot A in Fig. 7. A portion of
these currents flow into slot A as “mutual” currents, giv-
ing slot-slot coupling which may be represented as mu-
tual inductance between the adjacent slots A-B and
A-C. If there is zero phase shift between adjacent slots,
the mutual current from the two slots adjacent to a
given slot and the self-current of the slot will tend to
cancel. For a 7/2 phase shift there will be no net effect
from the mutual currents arising from adjacent slots,
and at 7 phase shift the self and mutual currents will
add. The over-all effect is that the bandwidth of the
slot band is reduced below the value predicted by a the-
ory which does not include the irrotational component
of the magnetic field. The effect of this extra component
of field is less important in the cavity pass band than in
the slot pass band.

The situation which has been described is that which
is the case for identically placed slots between the
cavities. If the slots at one plane are rotated with re-
spect to the slots at adjacent planes the effect of the
mutual currents is reduced.

Fig. 8 gives experimental results in a system with the
slots aligned and in a system with the slot rotated 90°
to adjacent slots. It is noted that with the mutual effect
eliminated, the self-effect raises the slot band in fre-
quency but does not reduce its total bandwidth.

The behavior of this irrotational mode depends on the
determination of the function which is the solution to
the Neumann problem in a cylindrical cavity resonator
with the given boundary conditions. With the problem
solved, the gradient of this function is taken along the
slot itself and along adjacent slots to give the self- and
mutual currents, respectively. The solving of the Neu-
mann problem involves dealing with slowly converging
series of trigonometric and Bessel functions. The con-
vergence of these series depends critically on the fact
that the width of the slot is finite. It has not been possi-
ble to sum these series in closed form; consequently
only a semiquantitative picture will be given of the ef-
fect of the irrotational mode, or the “slot-slot” coupling
which it represents. The slot is of width d, and is placed
at z=L, as shown in Fig. 9. We have for a given cavity

VY =0

N

—=H, on S 48"

an

a

i=0 on S. (38)
on

The most general solution for ¥ which obeys Laplace’s
equation and the boundary conditions of the cylindrical
cavity is
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¥ = D Apn cosh (8,2)Jm(Bur) sin (m6) (39)

with
Jw'(Bna) = 0.

The current along the slot, I, is related to the normal
magnetic field H, at the slot as follows:

LI = uH,d (40)

where L is the inductance per unit length of the slot, as
defined previously. The field is assumed to be constant
across the width of the slot. From (10), (11), and (30)
we have

I = I, sin (akf), (41)

where I, is the maximum value of the total current flow-
ing along the slot. We note that L/u=Z,/n where Z,
and % are the characteristic impedances of the slot and
free space, respectively. Thus, from (40), at the slot we
have

oY Zo 1o

— — sin (akf). (42)
9z =L n d
3800 —
=
3400
yt
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Fig. 8—DBrillouin diagrams for coupled-cavity system. A. Adjacent
slots in line, B. Adjacent slots rotated 90°,
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Fig. 9—Coordinate system for calculation of irrotational
component of the magnetic field.
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Egs. (38), (39), and (42) may be combined?® to give an
approximate expression for the irrotational field in the
cavities and the self- and mutual currents associated
with this field give an added current flowing in the slot
region at the cavity

ol ol
Jww=—P—+ Q—cos(8L), (43)
Ox dx
where
P Zy 1 Bna (sin (6nd/2)>2
o S tan (B.L) (B.a)? — L\ Baud/2
VA 1 " in (8.d/2)\?
Q=—O . Bna <sm(,8 /)>. (49)
7 “n sinh (B.L) (Bna)? — 1\ B.d/2

We have made the approximation of using only the
first @ term in the double summation of (39). The
strongly converging terms

<sin (ﬁ‘nd/Z))2
Bxd/2
arise from integrations over the finite width of the slots-

The net current driving the slot is j,47j,0. Modifying
(11) accordingly, (31) now becomes

&1 — 243
tan (o'Cw/2) — p'm/2
= an/TE P = 0 cos BL sin? (8L/2)

(45)
where

p
T V1 P—0cosgL

o

Thus, we have a coupling equation which is of the same
form as the coupling equation obtained without the in-
clusion of the irrotational mode, but with different slot
resonant frequencies and coupling coefficients,

wa' = ws/1 -+ P — Q cos BL
ar = a1 -+ P — QcosBL.

(46)

The quantity P, the self-term, will in general be larger
than the quantity Q, the mutual term, from adjacent
slots. The slot resonant frequency will be higher than in
the case without the inclusion of the irrotational mode
at BL=0. As BL increases, the slot resonant frequency
will increase in value. Based on this higher slot resonant
frequency, the coupling between cavities will, for cer-
tain BL, give a characteristic frequency below this
resonant frequency, as is given by the equation whose
solutions are given in Fig. 4. The net result will be a de-
crease in the total bandwidth of the pass band associ-
ated with the slot resonant frequency. The sum of the

s M. A. Allen, “Coupling of Multiple Cavity Systems,” Micro-
wave Lab., W. W. Hansen Labs. of Physics, Stanford University,
Stanford, Calif., M.L. Rept. No. 584; 1939.
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first ten terms of the expansion, in (44), gives a good ap-
proximation of the expansions. In (45) the values of P
and Q thus obtained account for the departure from
theory in the lower pass band of Fig. 3.

1V. DETERMINATION OF FIELD DISTRIBUTIONS

In assessing the usefulness of microwave filters for
interaction with an electron beam, the quantity
E*(0)/W is a figure of merit where E*(0) is the square of
the longitudinal component of the electric field on the
axis and W is the energy stored per periodic length. This
quantity will be considered.

It is possible to make accurate estimates of the w-3
curves for large coupling between cavities by using a
theory based on only the dominant mode in the normal
mode expansions of the fields. Although the w-8 curves
can be accurate at frequencies far from the dominant
mode resonance, the dominant mode alone is not suffi-
cient to express the values of the fields in the cavities.
This is illustrated by the fact that, in Appendix B, we
found an expression for w in a variational form; thus,
by using only a rough estimate of the fields in the slot
we obtain a value for the frequency which is Jess in error
than the estimate of the fields themselves.

A theorem exists for lossless periodic transmission
system which states that the time-average electric
stored energy per period is equal to the time-average
magnetic stored energy per period in the pass band. A
proof of this theorem has been given by several authors.®
Using this theorem we are able to express the stored en-
ergy per period in terms of only the electric energy.

The cylindrical cavity resonators with which we are
concerned have lengths much smaller than their diam-
eters. The characteristic frequencies of the normal
modes having variations of the field in the direction of
the cavity length (z-varying modes) will thus be very
much above the characteristic {requencies of the cor-
responding non-z-varying modes, and will have much
smaller amplitudes in the expansion. Therefore, the
electric energy stored in the coupled system under con-
sideration, except in and around the region of the slot,
comes largely from the dominant mode and other non-
6-, non-z-varying modes. The dominant mode has a
longitudinal component of the electric field which has a
maximum value on the axis and falls to zero at the cir-
cumference of the cavity. Higher-order modes have
further zeros between the maximum value on the axis
and zero at the circumference. In the coupled sys-
tem, for values of frequency above the dominant mode
frequency, since one or more additional zeros in the
longitudinal component of the electric field must occur,
the dominant mode alone cannot give a good representa-
tion of the field. This is illustrated in Fig. 10. Thus the
stored energy in the cavities must have appreciable con-
tributions from several modes.

9 D. A. Watkins, “Topics in Electromagnetic Theory,” John
Wiley and Sons, Inc., New York, N. Y.; 1958.
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Fig. 10—Vor structure in (a), the plot of the amplitudes as a function
of radial distance for the first two terms of the normal mode
expansions is given in (b).

We now consider the slot region. If the total field E

everywhere is divided into two parts
B (Sab)+F (a7

n

where the subscript On refers to the TMg.o modes, then
a large proportion of the electric energy stored in the
slot region would arise from the part of the field repre-
sented by E’. Because of the orthogonality of the nor-

mal modes, the stored energy W per periodic length is
given by

W = 1/2f eE-FE*dr
v

i

¢E'-E'*dr.

V.

= > eonWe, + 1/2 (48)

The summation in (48) may be summed in closed form.®
The volume integral on the right-hand side of (48) has
most of its contribution from the part of the volume
near the slot. The behavior of the field in the slot region
was derived from considerations of the excitations of a
TEM wave guided by parallel-plane conductors leading
to a static description of the fields there. The energy in
the fields at the slot is as would be derived for a static
distribution of the fields. Thus, the time-average electric
energy stored by a slot W, is given by

Wop =1/2 f E - E*dr

T

/2

Ii

1/2 Co2dx.

J 12

(49)

We assume that (49) includes all the energy stored out-
side the TMy,, modes in the coupled system, and so
avoid having to consider the gz-varying and f-varying
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modes’ contributions separately. The voltage ¢ may
therefore be obtained from (30).

If now the field on the axis is considered, then, of the
normal modes which have a longitudinal component of
electric field on the axis, the non-z-varying modes will,
as in the considerations of energy, contribute more to
the normal mode expansion for the electric field on the
axis than the z-varying modes. Thus, for cavities of
large diameter-to-length ratio, we express the electric
field on the axis as an expansion based only on the
TMyne normal modes,

E0) = 2 ¢onFon(0). (50)

We note that the azimuthal-varying modes have no
longitudinal component of the electric field on the axis,
and they need not be considered as they are in comput-
ing W, the total stored energy per period. Using values
of frequency based on the dominant mode expansion,
(50) may be summed in a closed form.®

For the type of coupling we are considering, the irrota-
tional mode males no direct contribution to the electric
energy stored per period; it contributes only to the
stored magnetic energy. However, this irrotational
mode does have an effect on the values of the coeffi-
cients of the normal mode expansions. Values of fre-
quency based on this irrotational mode should be in-
cluded in the determination of the quantity E? (0)/WV,
especially in the slot band.

Some typical theoretical and experimental results are
shown in Fig. 11. If only the dominant mode had been
used in the normal mode expressions the large values of
E2(0)/W at large values of 8L in the upper pass band
would not have been predicted.

APPENDIX A

EvarLuatioN oF THE COEFFICIENTS OF THE NORMAL
MobDE EXPANSIONS OF THE FIELDS IN A CAVITY

The normal modes of the 7th cavity are given by
E; (7, H, .(P).
w,? are the associated characteristic frequencies, with

e—j‘wn(i)t

time dependence assumed. Maxwell’s equations with
electric boundary conditions are obeyed:

6 X Ez’,n = - jwi,nﬂHi,n
ﬁ X H«i.n =]'0-’i,n€_E—1,n
VX Hin = Jainelle, (51)
V X Ein = jwinuH ;0
—6 X ﬁ:k,n = _jwz,nEEj,n J
with
AXEn=0 on S+ S/+ S (52)
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Fig. 11-—Normalized EX0)/W plotted as a function of SL for the
two lower pass bands of a coupled-cavity system of the type
shown in Fig, 1. i

The required fields E(#) and H.(7) satisfy Maxwell’s
equations with frequency w in the coupled system:

§7 X E, = —jw,u,_ﬁi
VX H; = jweEi

- s (53)
A% X Et = ]pri
v X ﬁj = jweEj
with
# X El(f’) =0 on S;—S/—S7. (54)
We consider the following:
-
v
— [ 1T X B - BT X Hildar
Vi
— . — —%
=f [—]w,uH@-Him —|—]wi,neE-Ei,n]dT. (55)
Vi

By using (51) and (53) and employing Gauss’s theorem
. we have

wi,nf G(Ei'—Ej,n)dT — wf ,u(ﬁj,n-ﬁi)dr
Vi 14

i i

- f (B X Wip)-ndS;  (56)
7 8;
and, similarly, by considering
f V- (Br, X Tdr
Vi
and (52) we can show that
o f (Thn Bydr — wim f W@ Hdr = 0. (57)
V.

s
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The normal mode expansions are

_E—i = Z ei,nEi,n (58)

Ei = Z hz,nﬁi,n + ’{7\0@ (59)
where

f enEi‘Ti,-,n*dT
Cin = T (60)
f wEin E,indr
Vi

and

hi,n = : (61)
f ﬂﬁi,n'ﬁi,ndT
Vi
By using (56) and (57) we obtain
. f (B X Hin)- 1:dS
—JWin i
P — Sed (62)
w? — Wit 2W, @
) f (E; X H;.*) - 7dS
him = ——o . DS (63)
0 — w; 2 2W;,n

since the surface integrals only have values at the slot
surfaces.

AprPENDIX B
VARIATIONAL FORM OF THE SOLUTION

We shall start with the basic equations, (13) and
(26), for the excitation of the slots. These equations
combine to give

9%¢;

Jdx?

+ k%,

w(l + cosBL) | 2L
kZO Z —‘;““_—T]i,n,ylf ji,n,y,¢idx
n W = Win —1/2
N 27, 64

for the case of a chain of identical cavities. Rewriting,
we obtain

s
+— ¢
dx? c? ¢
VA 1+ cosBL)w? Fimy Y7
_his BL* finw f Trngbide.  (65)
C (w2 - wi,nQ) ZWz,n —i/2

Multiplying (65) by ¢/*, and integrating once along the
slot, we obtain



372

/2 62¢i wZ Z'0
+— i) Fde = —
f_l/2< axz 62 4) d) 4
w?(1 + cos BL) 1z

-2
n 2((.02 - wz,nz) Wi,n

12 %
ji,n,yqst*dx f jz,n,y¢¢dx. (66)

—1/2 1/2

Integrating by parts the second term on the left-hand
side of (66) we have

e T

c? —1/2 /2 ox ox c
w*(1 + cos BL) f”2 . f”2
* -z,n, z d.’JC -1*,n, ¢zdx 67
; (w? — win?)2Wepn —1/2] y¢ —1/2] Y (67)
since
#(£+1/2) =0
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Let us assume that ¢y,; and w solve (67). A trial func-
tion for the voltage is expressed as follows:

¢ (%) = do,:(x) + e(x).

Since the values of the voltage at the ends of the slot
are known,

(68)

ei(£1/2) = 0. (69)

Suppose, then, (67) vields a value of frequency w for the
trial function where
w = wy + A. (70)
Then, it can be shown that A is of the second order in €.
Thus (67) is a variational form of the solution.
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Summary—This paper describes the mechanism of phase modu-
lation by waveguide in the presence of a high intensity acoustic field.
X-band rectangular was studied to determine the following:

a) Resonant frequency in a transverse vibrational mode.

b) Means of minimizing phase modulation.

CW radar can be represented as a microwave
bridge in which the transmitted signal is com-
pared in frequency with the received signal so
that Doppler information may be obtained. Any dis-
turbance of the bridge at the Doppler frequency will
cause degradation in system sensitivity. It is our pur-
pose to show that waveguide under a high acoustical
field can definitely contribute to microphonics via the
mechanism of phase modulation. This can be accom-
plished in many ways to a waveguide but we are prima-
rily interested in transverse motion. The different trans-
verse modes for the top and side waveguide walls are
shown in Fig. 1.
Phase shift is accomplished by the motion of the side
walls. The incremental phase shift is expressed as the
following relationship for a rectangular waveguide op-

* Manuscript received by the PGMTT, November 19, 1959; re-
vised manuscript received, January 21, 1960.
1 Raytheon Company, Bedford, Mass,
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Fig. 1—First-mode vibration shapes.

erating in the TE;y mode:

wi\da

2a®

do = ;

d¢ =incremental change of phase,

da =1incremental change of side wall,
a=wide dimension of the waveguide,
I=length of the waveguide,

A, =guide wavelength.

Fig. 1 indicates an ideal situation of no coupling be-
tween waveguide walls. However, in actual practice
there is coupling between the motion of the wide walls



